CLAIMS

What is claimed is:

1. A truncated sTNFR having the following formula:
 R₁-[Cys¹⁹-Cys¹⁰³]-R₂
 wherein [Cys¹⁹-Cys¹⁰³] represents residues 19 through 103 of sTNFR-I, the amino acid residue numbering scheme of which is provided in Figure 1 (SEQ ID NO:2) to facilitate the comparison; wherein R₁ represents a methionylated or nonmethionylated amine group of Cys¹⁹ or of amino-

terminus amino acid residue(s) selected from the group:

С

15

IC SIC NSIC (SEQ ID NO:15) NNSIC (SEQ ID NO:16) QNNSIC (SEQ ID NO:17) PQNNSIC (SEQ ID NO:18) HPQNNSIC (SEQ ID NO:19) IHPQNNSIC (SEQ ID NO:20) YIHPQNNSIC (SEQ ID NO:21) KYIHPQNNSIC (SEQ ID NO:22) GKYIHPQNNSIC (SEQ ID NO:23) QGKYIHPQNNSIC (SEQ ID NO:24) PQGKYIHPQNNSIC (SEQ ID NO:25) CPQGKYIHPQNNSIC (SEQ ID NO:26) VCPQGKYIHPQNNSIC (SEQ ID NO:27) SVCPQGKYIHPQNNSIC (SEQ ID NO:28) DSVCPQGKYIHPQNNSIC (SEQ ID NO:29);

and wherein R_2 represents a carboxy group of Cys^{103} or of carboxy-terminal amino acid residues selected from the group:

F
FCC
FCCS (SEQ ID NO:30)
FCCSL (SEQ ID NO:31)
FCCSLC (SEQ ID NO:32)
FCCSLCL (SEQ ID NO:33);

- and variants and derivatives thereof, provided however, when R₁ represents a methionylated or nonmethionylated amine group of amino acid sequence VCPQGKYIHPQNNSIC or an N-terminal truncation thereof of from 1 to 15 residues, then R₁-[Cys¹⁹-Cys¹⁰³]-R₂ is not an addition variant having the formula R₁-[Cys¹⁹-Cys¹⁰³]-FCCSLCL-R₃, wherein R₃ represents a carboxyl group of amino acid residues Asn¹¹¹-Asn¹⁶¹ of Figure 1 or a carboxy-terminal truncation of Asn¹¹¹-Asn¹⁶¹ of Figure 1.
- 2. The tumor necrosis binding protein according to Claim 1, selected from the group consisting of sTNFR-I 2.6D/C105, sTNFR-I 2.6D/C106, sTNFR-I 2.6D/N105, sTNFR-I 2.3D/d8, sTNFR-I 2.3D/d18 and sTNFR-I 2.3D/d15 or a variant or derivative thereof.

3. A truncated sTNFR having the following formula:

 $R_4 - [Cys^{32} - Cys^{115}] - R_5$

wherein [Cys³²-Cys¹¹⁵] represents residues Cys³² through 25 Cys¹¹⁵ of mature, full-length 40kDa TNF inhibitor, the amino acid residue numbering scheme of which is provided in Figure 8 (SEQ ID NO:35) to facilitate the comparison; wherein R_4 represents a methionylated or nonmethionylated amine group of Cys^{32} or of aminoterminus amino acid residue(s) selected from the group:

С

MC

MC			
QMC			
AQMC	(SEQ	ID	NO:36)
TAQMC	(SEQ	ID	NO:37)
QTAQMC	(SEQ	ID	NO:38)
DQTAQMC	(SEQ	ID	NO:39)
YDQTAQMC	(SEQ	ID	NO:40)
YYDQTAQMC	(SEQ	ID	NO:41)
EYYDQTAQMC	(SEQ	ID	NO:42)
REYYDQTAQMC	(SEQ	ID	NO:43)
LREYYDQTAQMC	(SEQ	ID	NO:44)
RLREYYDQTAQMC	(SEQ	ID	NO:45)
CRLREYYDQTAQMC	(SEQ	ID	NO:46)
TCRLREYYDQTAQMC	(SEQ	ID	NO:47)
STCRLREYYDQTAQMC	(SEQ	ID	NO:48)
GSTCRLREYYDQTAQMC	(SEQ	ID	NO:49)
PGSTCRLREYYDQTAQMC	(SEQ	ID	NO:50)
EPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:51)
PEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:52)
APEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:53)
YAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:54)
PYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:55)
TPYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:56)
FTPYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:57)
AFTPYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:58)
VAFTPYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:59)
QVAFTPYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:60)
AQVAFTPYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:61)
PAQVAFTPYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:62)
LPAQVAFTPYAPEPGSTCRLREYYDQTAQMC	(SEQ	ID	NO:63);

and wherein R_5 represents a carboxy group of Cys^{115} or of carboxy-terminal amino acid residues selected from the group:

Α

AΡ

APL

APLR (SEQ ID NO:64)

APLRK (SEQ ID NO:65)

APLRKC (SEQ ID NO:66)

APLRKCR (SEQ ID NO:67)

- and variants thereof, <u>provided however</u>, when R₄ represents a methionylated or nonmethionylated amine group of amino acid sequence TCRLREYYDQTAQMC or an N-terminal truncation thereof of from 1 to 15 residues, then R₄-[Cys³²-Cys¹¹⁵]-R₅ is not an addition variant
- having the formula R_4 -[Cys³²-Cys¹¹⁵]-APLRKCR- R_6 , wherein R_6 represents a carboxyl group of amino acid residues Pro^{123} -Thr¹⁷⁹ of Figure 8 or a carboxy-terminal truncation of Pro^{123} -Thr¹⁷⁹ of Figure 8.
- 4. The tumor necrosis binding protein according to any one of Claims 1 through 3, wherein said amino acid sequence is nonglycosylated.
- The tumor necrosis binding protein
 according to any one of Claims 1 through 3, wherein said amino acid sequence is glycosylated.
- 6. The tumor necrosis binding protein according to any one of Claims 1 through 5, wherein the25 protein is conjugated to a water soluble polymer.

30

- 7. A polyvalent tumor necrosis binding protein comprising at least one tumor necrosis binding protein according to any one of Claims 1 though 6.
- 8. A polyvalent tumor necrosis binding protein having the formula R₁-X-R₂, wherein:

 X comprises a linker, wherein said linker is a water soluble polymer; and

 R₁ and R₂ are biologically-active molecules covalently

 bonded to said water soluble polymer, wherein at least one of R₁ and R₂ is a tumor necrosis binding protein according to any one of Claims 1 though 6.
- 9. The polyvalent tumor necrosis binding 15 protein of Claim 8, wherein the water soluble polymer is polyethylene glycol.
- 10. The polyvalent tumor necrosis binding protein of Claim 9, wherein the protein is selected from the group consisting of sTNFR-I 2.6D/C105db and sTNFR-I 2.6D/C106db.
 - 11. The tumor necrosis binding protein according to any one of Claims 1 through 10 for use in treating TNF-mediated disease.
 - 12. The tumor necrosis binding protein according to any one of Claims 1 through 10 for use in treating arthritis.
 - 13. A polynucleotide encoding the tumor necrosis binding protein according to any one of Claims 1 through 3.

10

15

	14.	Α	nucleic	acid	sequ	ence	compr	isi	.ng	a	tumor	•
necrosis	fac	to	r binding	g pro	tein	enco	ded by	a	nuc	:16	eotide	ž
sequence	sel	ect	ed from	the :	follo	wing	:					

- (a) a cDNA sequence as shown in Fig. 2;
- (b) a cDNA sequence as shown in Fig. 3;
- (c) a cDNA sequence as shown in Fig. 4;
- (d) a cDNA sequence as shown in Fig. 5;
- (e) a cDNA sequence as shown in Fig. 6;
- (f) a cDNA sequence as shown in Fig. 7;
- (g) a sequence which is degenerate in the
 coding regions or portions thereof of
 (a), (b), (c), (d), (e) and (f);
- (h) a sequence which hybridizes to (a),
 (b), (c), (d), (e), (f) and (g); and
- (i) a sequence which is complementary to(a), (b), (c), (d), (e), (f), (g) and(h),

provided however, that the nucleic acid does not encode a protein having the formula $R_1\text{-}[\text{Cys}^{19}\text{-}\text{Cys}^{103}]\text{-}\text{FCCSLCL-}R_3$

wherein $[Cys^{19}-Cys^{103}]$ represents residues 19 through 103 of sTNFR-I, the amino acid residue numbering scheme of which is provided in Figure 1 (SEQ ID NO:2) to

- 25 facilitate the comparison; wherein R₁ represents a methionylated or nonmethionylated amine group of an amino acid sequence comprising NNSIC and R₃ represents a carboxyl group of amino acid residues Asn¹¹¹-Asn¹⁶¹ of Figure 1 or a 30 carboxy-terminal truncation of Asn¹¹¹-Asn¹⁶¹ of Figure 1.
 - 15. A polynucleotide having the sequence as set forth in Figures 2, 3, 4, 5, 6, or 7, or a portion thereof.

30

35

5

16. A vector comprising a polynucleotide of any one of Claims 13 through 15 operatively linked to an expression control sequence.

17. A prokaryotic or eukaryotic host cell containing a polynucleotide of any one of Claims 13 through 15.

- 18. A method comprising growing host cells of Claim 17 in a suitable nutrient medium and, optionally, isolating said truncated sTNFR from said cells or said nutrient medium.
- 19. The method for producing the tumor necrosis binding protein according to Claim 18, wherein said host cells are *E. coli*.
- 20. The method for producing the tumor necrosis 20 factor binding protein according to Claim 18, wherein said host cells are Chinese hamster ovary cells.
 - 21. A method comprising the steps of:
 - (a) culturing a prokaryotic or eukaryotic host cell of Claim 17;
 - (b) maintaining said host cell under conditions allowing the expression of truncated sTNFR by said host cell; and
 - (c) optionally isolating the truncated sTNFR expressed by said host cell.
 - 22. A tumor necrosis binding protein which is the recombinant expression product of a prokaryotic or eukaryotic host cell containing an exogenous polynucleotide of any one of Claims 13 through 15.

10

15

20

- 23. A pharmaceutical composition comprising the tumor necrosis factor binding protein according to any one of Claims 1 through 10 in association with a pharmaceutically acceptable vehicle.
- 24. A pharmaceutical composition comprising the tumor necrosis factor binding protein produced in accordance with the method of Claim 18 in association with a pharmaceutically acceptable vehicle.
- 25. A pharmaceutical composition comprising the tumor necrosis factor binding protein produced in accordance with the method of Claim 21 in association with a pharmaceutically acceptable vehicle.
- 26. A method of treating a TNF-mediated disease comprising administering to a patient the pharmaceutical composition of Claims 23 through 25.

27. The method of claim 26, wherein the TNF-mediated disease is arthritis.

- 28. A method of preparing a pharmaceutical
 composition wherein a therapeutically effective amount
 of the tumor necrosis factor binding protein according
 to any one of Claims 1 though 10 is mixed with one or
 more pharmaceutically acceptable vehicles.
- 30 29. The use of the tumor necrosis factor binding protein according to any one of Claims 1 though 10 for treating a TNF-mediated disease.
- 30. The use of the tumor necrosis factor binding protein according to Claim 29 for treating arthritis.

31. A kit for preparing an aqueous protein formulation comprising the tumor necrosis factor binding protein according to any one of Claims 1 through 10 and a second container having a physiologically acceptable solvent.